【勾股定理的逆定理教案】勾股定理的逆定理数学教案

热点资讯 2019-03-15 点击:

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

  本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

  (3)通过实际问题的解决,培养学生的数学意识.

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数.

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的纵横迁移感受数学的辩证特征.

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用.

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

  

【勾股定理的逆定理教案】勾股定理的逆定理数学教案

http://m.0477edu.com/thread-45539-1-1.html

相关推荐

猜你喜欢

大家正在看